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1. Introduction

Recently « great deal of attention has been given to the analysis of, and the develop-
ment of approximation theory for, infinite dimensional operator Riccati differential equa-
tions. This is due in part to the role they play in the characterization of the closed-loop
feedback structure of the solution to linear-quadratic optimal control problems for dis-
tributed pasameter systems (see [10]). Working fromn Temam's [14], {15] formulation (see
also Barbu [3]) of a class of operator Riccati equations in the space of Hilbert-Schmidt op-
erators on a separable Hill:ert space, we develop an approximation and convergence theory
for generic Galerkin type approximations. We make the usual assumption that our un-
derlying Hilbert space admits a densely, continuously, and compactly embedded subspace.
The only condition that we then require on our sequence of approximating Galerkin sub-
spaces is the usual one that the corresponding sequence of orthogonal projections converge
strongly to the identity in the stronger topology. We are able to obtain Hilbert-Schmidt
operator norm convergence of the approximating Riccati operators, uniformly in time on

compact time intervals.

Our effort here differs significantly from other recent treatments of the approximation
theory for infinite dimensional opcrator Riccati equations (see, for examiple, [6]) in that i)
we obtain Hilbert-Schmidt as opposed to strong operator convergence, and, more impor-
tantly, ii) our convergence theory is based directly upon, and involves only, the differential
equation itself rather than equivalent integral equations. Of course in order to do (lLis
we must necessarily consider a somewhat more restrictive, but still sufficiently interesting
from an applications point of view, class of problems. For example we require that the
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linear part of the equation be strongly coercive on a space of Hilbert-Schmidt operators
and that the n(;n-homogeneous or quasi autonomous perturbation (the state penalization
operator in the cc;ntext of the LQ control problem) be Hilbert-Schmidt. Our treatment
here is restricted to the quasi-autonomous or constant coefficient case. The temporally
inhomogeneous problem requires a different approach; our results for the time dependent

case will be reported elsewhere.

Our convergence theory is based upon a generic appreximation result for nonlinear
quasi-autonomous evolution equations in Banach space with dynamics described by accre-
tive operators. In section 2 we prove a noulinear analog of the well-known Trotter-Kato
theorem on the approximation of linear semigroups - i.e. stability (uniform dissipativity)
and consistency (strong operator convergence of the resolvent) yield convergence (see, for
example, [11]). The result that we prove here is closely related to similar approximation
results for nonlinear evolution systems which have appeared elsewhere in the literature (for
example, [4] and [8]). However the theorem we prove below is one that is most appropriate
for the particular class of problems that are of interest to us here. We follow Goldstein
(8] and give a proof using an idea originally suggested by Kisynski [9] for the linear case
wherein convergence is demonstrated via an application of an existence theorem to an

evolution equation in an appropriately constructed sequence space.

In section 3 we briefly outline Temam’s [15] formualtion of the Riccati equation as a
well posed nonlinear evolution equation in the space of Hilbert-Schmidt operators. Qur
approximation and convergence theory is developed and presented in section 4. In section

5 we illustrate the application of our results in the context of a linear quadratic optimal
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control problem (i.e. the linear quadratic regulator problem) for a one dimensional heat

equation.

2. An Abstract Approximation Result for Nonlinear Evolution Equations

Let Xo be a real Banach space with norm denoted by |- |¢. Let X§ be its dual and
let Ag : Xo — 2%° be an, in general, multi-valued nonlinear closed accretive operator (i.e.
{(x,y) : xe X0,y € Agx} is a closed subset of Xo xXg, and |x; —Xz]o < [x;+Ay1—(x2+Ay2) o
for all A > 0, x; € Xp, and y; € Agx;, 1 = 1,2) on Xg. Define the domain of Aj to be the set
Dom(Ag) = {x ¢ Xo : Aox # ¢}, and the range of Ay to be the set R(Ap) = U Apx.
Since Aj is accretive, it follows that for A > 0 the resolvent of Ay at X, Jo(\) :?;:(?\Xo)‘l,
is a well defined single-valued nonexpansive operator (i.e.|Jo(A)y1 — Jo(MN)y2lo < ly1 —¥2lo,
¥1,¥2 € Dom(Jo()))) defined on Dom(Jg(A)) = R(I + AAg). Suppose that T > 0, let

t — fo(t) be an X, — valued map defined on [0,T] and let x§ ¢ Xo. We consider the initial

value problem in Xy given by

(21) ).C()(t) + A()X()(t-) ) f()(t). ae. te (O,T),

(2.2) x0(0) = x3p.

We shall say that a function x¢(-) : {0.T] — X, is a strong solution to the initial value
problem (2.1), (2.2) if it is continuous on [0,T], Lipschitz on every compact subinterval of
(0,T), differentiable almost everywhere on (0.T), and satisfies (2.1) and (2.2). We shall
call xy an integral solution of (2.1). (2.2) if it is continuous vn {0,T] satisfics (2.2), and if

the inequality
1 2 1 2 '
5hxo(t) —x|g < sixo(s) —xlg+ [ <fo(7) —y.Xo(7) —x >¢ dr
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holds for all x € Dom(Ap), ¥ € Agx, and 0 < s < t < T where the pairing < -, >¢:
Xo x Xo — R is given by < y,x >o= sup{x*(y),x* € ®o(x)} with @ : Xg — 2%° denoting
the duality map on Xy (see [3]). A strong solution of (2.1), (2.2) is of course also an integral

solution. The following existence, uniqueness, aud regularity results are given by Barbu
[31.

Theorem 2.1 Let {X,]-]} be a real Banach space and suppose that A : X — 2% js a
closed accretive operator on X. Let. C be a closed convex cone in X such that Dom(A) C C
and R(I+AA) D C,) > 0. If x° e Dom(A) and f € L,(0, T; X) with f(t) ¢ C, a.e. t € (0,T),

then there exists a unique integral solution x to the initial value problem

(2.3) x(t) + Ax(t) 3 f(t), a.e.te(0,T),

(2.4) x(0) = x°,

———

with x(t) € Dom(A) a.e. t € (0, T). Moreover, if y is the integral solution to (2.3), (2.4)

with f replaced by g € L;(0, T; X), then

Ix(t) = y(t)]* < Ix(s) — y(s)]* + 9/ <f(r) —g(7),x(7) - y(r) > dr

for0<s<t<T.

Theorem 2.2 If in addition to the hypotheses and conditions of the previous theorem we ®
have x° € Dom(A) and f € W11(0, T: X). then the initial value problem (2.3), (2.4) has a

unique strong solution x with x € W1>(0, T;X). x(t) e Dom(A) a.e. t € (0. T) and
®

[x(t)] = JAx(t)+f(t)] < |Ax" +£(0)] +2 / If'(s)|ds, a.e te(0,T).
0
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Furthermore, if X and X* are uniformly convex, then x is everywhere differentiable from

the right and

dtz

—dT(t) = (Ax(t) + f(¢))°, 0<t<T

where (Ax(t) + f(t))° denotes the unique element of minimum norm in the set Ax(t) +

().

Henceforth, we shall assume that there exists a closed convex cone Cy C Xg for which
Dom(Ag) C Cop and R(I+ AAg) D Co, A > 0, that xJ € Dom(Ag) and that fy € L;(0, T; Xo)
with fo(t) € Co for a.e. t € (0, T). Consequently Theorem 2.1 applies and we are guaranteed
that the initial value problem in Xg, (2.1), (2.2), admits a unique integral solution.

We prove an approximation result in the spirit of the well known Trotter-Kato theorem
for the approximation of linear semigroups (see, for example, [11]), and the approximation
theorems given by Crandall and Pazy {4] and Goldstein [8] in a nonlinear setting. Although
the convergence theorem we shall prove here does not differ significantly from the ones given
in [4] and [8], the latter results are stated inappropriately and are somewhat too restrictive
for the application we intend to consider below. Following Goldstein (8], the proof we shall
give here is based upon an idea first suggested by Kisynski [9] in the context of linear
semigroup approximaton. We argue convergence via an application of the existence and
uniqueness result, Theorem 2.1.

For each n = 1,2,... let X,, be a closed linear subspace of Xg. and let A, : X, — 2%~ be
a closed accretive operator on X;. As was the case above with Ag. for A > 0 the resolvent
of Ay, Ju(A) = (I+2A,)7! is a well defined, single-valued, nonexpansive operator defined
on Dom(J,(A)) = R(I+ XA, ). We assume that there exists a closed convex cone C, in X,
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for which Dom(A,) C C, and R(I+ AA,) D Cy, A > 0. We assume further that for each
n=12,...,x° is an element in Dom(A,) and that f, is a function in L,(0, T;X,) with
£.(t) € C, for almost every t € (0, T). It then follows that Theorem 2.1 implies that the

initial value problem in X, giver. by

(2.5) Xo(t) + Apxa(t) 2 fu(t), ae.te(0,T),

(2.6) xp(0) = x?v

admits a unique integral solution x, ¢ C(0,T; X,,).

In our discussions below, we shall use the notation lim D, D Dy where D, C X, and
n—oo

Do C Xp. By this we shall mean that for each zq € Do there exists a sequence {z,}32, with

z, € Dy and lim z, = z¢. Our fundamental approximation and convergence result is given
n—o0

in the following theorem. e
Theorem 2.3 Suppose
(1) lim C, D Cy °
n—oo 4
(i) lim f,(t) = fo(t) and there exists a g € L;(0,T) for which |f,(t)] < g(t), n = 1,2,...,
n——oc
for almost every t € (0,T)
®
(ili) Emp—oex? = x§ ¢
(iv) lim Ja(MNya = Jo(N)yo for each A > 0 whenever v, € C, and lim; _ooyn = yo € Co.
| {Eamde ]
Then lim x, = x¢ in C(0,T;Xy) where x,, for n = 1,2,... and x4 are the unique integral ¢
n—oo
solutionrs to the initial value problems (2.5), (2.6) and (2.1), (2.2) respectively.
Proof: If we define the lincar space X over the recals by °
X={u={u}ozo:u, e X,n=0,1,2,..., lim u, = ug}
n—oc
6
L)
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and for u = {uy }32, € X set |u| = sup |u,|o, then {X,]|- |} is a real Banach space. Let C
n

be the closed convex cone in X given by C = {u = {u,}32, e X : u, ¢ C,,n =0,1,2..}

Note that if Cy # ¢, hypothesis (i) implies that C # ¢. Define the operator A : X — 2X by

{v = {vn}ﬁozo (v, € 4AUp,
Au= n=0,1,2,..lim,_. v, = vg}, u = {un}io € Dom(A)

n=

) u ¢ Dom(A)
Dom(A) = {u={up}s%, e X:u, € Dom(A,),n=0,1,2...,and foreachn =1,2,...
there exists a v, € A u, for which nli—l}olo Va = Vo € Agug}.
The operators A, being closed and accretive implies that the operator A is closed and
accretive as well. Indeed, for example, for A > 0,u' e Dom(A),i = 1,2,and vi e Au',i =1,2,
we have
Jul — 7] = sup lul — w2l < sup [ul + Avh — (uF + Av2)lo = u? + Av! — (u? 4 Av?)]
n n
The fact that A is closed can be argued analogously.

Clearly Dom(A) C C and it also follows that for A > 0 R(I + AA) € C. To see this let
A>0andlet v={v,}32, € C. Then v, ¢ C, and C, C R(I + AA,), n = 0,1,2,... imply
that we may define up = Jo(A)va, n =0,1,2,.. and set u = {u,}52,. Now v ¢ C C X and
hypothesis (iv) yield nli_{r;o u, = nlin;o Ja(N)vy = Jo(A)vo = up; thus u € X. Also, if we set
Wn = (Vo —un)/A, n=0,12,.. then w = {w,}2%, ¢ X, w, € Aju, and nli—lgo W, = Wg € Agug.
It follows that u, € Dom(A, ) and therefore that u e Dom(A) with w e Auand v e (I+ AA)u.
We conclude that v e R(I + AA) and therefore that C C R(I + AA).

Define z° = {x2}22 ;. Then hypothesis (iii) implies that z € X. Moreover, using (iv)
it can be shown that Dom(A) = fu={uwl,eX u,e Dom(A,),n = 0,1,2, ...}. Thus
z e Dom(A). If we define the function fby f(t) = {fu(t)} 3%, for almost every t € (0, T), then

hypothesis (i1) implies that f e L; (0, T; X), and f,,(t) e C,,, n = 0,1,2,... a.e. t € (0, T) implies

T




that f(t) e C, a.e. t € (0,T). It follows from the auguments given above and Theorem 2.1

that the initial value problem in X
z+ Az(t) 5 f(t), ae. te(0,T)

z(0) = z°

admits a unique integral solution z € C(0,T; X) with z(t) € Dom(A) for almost every
t € (0,T). In addition, inspection of the proof of Theorem III. 2.1 given in [3] (paying
particular attention to how solutions are actually constructed) reveals that we must have
z(t) = {xn(t)}32, where for n = 1,2,..., x4 is the unique integral solution to the ini-
tial value problem (2.5), (2.6) in X, and x¢ 1s the unique integral solution to the initial
value problem (2.1), (2.2) in Xy. Consequently, since z(t) € X, t € [0, T], it follows that
nli_{t;() ¥n(t) = xo(t) for each t ¢ [0, T].

Finally, that the convergence of x,(t) to x¢(t) is in fact uniform in t for t € [0, T] can
be argued as it was done by Goldstein in [8]. Let ¢ > 0 and t € [0,T] be given. Then
2 = {xa}22, € C(0, T;X) implies that |«(t) — 2(s)] < ¢/3 for all 0 < 's < T with |t — s| <
26 = 26(e). Now nl—iP;o Xn(s) = xo(s) for each s ¢ [0, T] implies that |x,(s) — xo(s)|o < €/3

for all n > Ng = N(s,€). Thus
[xn(t) — Xo(t)lo < [xa(t) — xa(s)o + [xn{s) = xo(s)|o +[xo(s) = Xo(t)|o < ¢,

for all 0 < s < T with |t —s| < 26 and n > N,. Let k be the greatest integer less than or
equal to T/é and set N = max{No, Ns,Nos,...,Nxs, N7|. Then |x,(t) — xo(t)|o < € for all
n > N = N(¢) and the proof of the theorem is complete.
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3. Operator Riccati Equations on Spnaces of Hilbert-Schmidt Operators

In this section we briefly review and outline Temam’s [15] results on operator Riccati
equations set in the Hilbert space of Schimidt class operators on a separable Hilbert space.
Let H be a real separable Hilbert space with inner product and associated induccd norm
denoted by (-,-) and | - | respectively. Let V Dbe another real separable Hilbert space
with inner product < -,- > and induced norm || - || . We assume that V is densely and
continuously embedded in H (i.e. V = H, and there exists a positive constant u for which
ol < ullell,» € V). Identifying H with its dual, H*, we have V — H = H* — V* with
the embedding of H* in V* being dense and continuous as well. Denote the usual operator

norm on V* by || - ||.. Let v denote the canonical isomorphism (Riesz map) from V onto

V*. Then for ¢, € V we have
(Yo, ¥) =< @, ¢ >

where (-,-) in the above expression denotes the usual extension of the H inner product to
the duality pairing between V* and V. We assume further that the embedding of V into
H is compact. It then follows that y~! € £(V,V*)N L(H,V) and that 77! is self-adjoint,
positive, and compact as a mapping from H into H. We note that V* is in fact a Hilbert

space with inner product < -, >, given by

1

<@ >e=<y oy T > = (9,77 MY), par e VR

/e have that ||¢]l. = /< 9. @ >u. € V™.

Since y 7! is self-adjoint, positive, and compact on H there exists an orthonormal basis,
{ex}2,, for H such that y " lex = p{zek, k =1,2.... for some real numbers p, k=12, ...
Consequently {p; 'ex}$2, and {pxex }$<, are orthonormal bases for V and V* respectively.

9




For separable Hilbert spaces X and Y, let HS(X,Y') denote the Hilbert space of Hilbert-
Schmidt operators from X into Y. Denote the corresponding inner product and induced
norm by [, Jus(x.v) and | - lus(x,y) respectively. Set H = HS(H,H) with

(@, U]n = [@, Ulusiuan = 9 _(Dew, Tey).
k=1
and |®|y = |®lusny = VI[P ®ln, @, ¥ € H. Define the Hilbert space V by V =
HS(V*,H)N HS(H, V) with inner product
(@, Tly = [, Ylusven) + (8, Vlusary) = Y pi(®ex, Yox) + > < ey, Ve >,
k=1 k=1

l®lly = /[®, @]y, &, ¥ e V. It is not difficult to show that the dense and continuous
inclusions HS(V*,H) ¢ HS(H,H) c HS(V,H), and HS(H,V) Cc HS(H,H) C HS(H,V*)
hold. Also, it can be argued that HS(V*,H) and HS(V,H), and HS(H,V) and HS(H, V™)
are dual pairs with respect to the duality pairing

(@, W)n =) (@ex, Tey).

k=1

It follows that V* = HS(V,H) + HS(H,V*) and. identifying H with its dual H*, that
Y «— H — V*, with the inclusions dense and continuous.

Let a(-,-) : VxV — R be a bounded strongly V-elliptic bilinear form on V x
V. That is, there exist constants a. > 0 for which a(y,p) > allp]|? and |a(p,y)| <
Bllelllell, v, ¥ € V. (With minor modification our theory continues to hold if the form
a(-, ) satisfies the coercive inequality a(p,¢) + Alel? > alloll’. » € V, for some A € R.
To keep our presentation here as simple as possible, however, in our discussions below we

shall treat only the case A = 0.) Let 4 ¢ £(V,V*) be the operator defined by (Ad,y') =

10
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a(¢,¥), ¢,y e V. Let a*(-,-) : V. x V — R be the forin which is adjoint to a(-,-): that is
a*(¢,1) = a(¥, ¢), ¢, € V. Then a*(,9) > al|p|i* and |a*(p.¢)] < Bllollilvll, 0.9 e V.
Let A € L(V,V*) be the operator defined by (A*p.v) = a*(p,v) = a(¥,9), v, ¥ € V.
Let Cy be the closed convex cone in H given by Cy = {® ¢ HS(II,H) : & = &*, % > 0}.
Let T > 0 and suppose that [1 € Co and that Fo e L;(0,T; H) with Fy(t) € Co for almost
every t € (0, T) are given. Let & — Fy(®) be a single valued map defined for each ® € Cy
with range in ‘H which is continuous from H into itself. Assume further that F, has the
property that

[Fo(®) = Fo(¥), @~ ¥]x = 0,

for all ¢, ¥ ¢ Cy. We note that if z — Fy(z) is a single valued complex function of the
complex variable z with F,(0) = 0 and which is analytic on the nonnegative real axis, then
the mapping ® — Fo(®P) satisfies Fo(®P) € H for all ¢ ¢ Cy and is continuous from H into
H (see Dunford and Schwartz 5], Theorem XI.6.7.7). We seek a solution ITj to the initial
value problem

(3.1)  To(t) + A*TIo(t) + Ho(t) A + Fo(Io(t)) = Fo(t), ae. t € (0,T)

(3.2) o(0) = I
with IIg(t) € Cy. a.e. t € (0,T).

Note that when Fy(®) = ®2, (3.1) becomes the standard quadratic Riccati equation.

Elementary properties of Hilbert-Schmidt operators (see [14]) can be used to argue that

for &, ¥ ¢ Cy we have

(@2 — 02— VU]y = [H(P—0). & — U}y +[(&— V)V, O - U]y > 0.

Essentially the same argument can be used for the case of Fo(®) = ¢" where n is any

11
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positive integer. For inore general quadratic terimns, for example, the one that results in
the case of the linear-quadratic optimal control problem, Fo(®) = ®NMP with M ¢ L(H),
M = M*, and M > 0, once again a similar argument will work so long as ®M > 0.® ¢ Gy

(see Proposition 2.2 in [15]). This will of course be true if ®M = M® for all ¢ € Cy

Remark 3.1 At this point a comment regarding the relationship between the operator
A* and the adjoint of A is in order. Define the operator A : Dom(A) C H — H to
be the restriction of the operator A to the set Dom(A) = {p e V : Ap € H}. It can
be shown (see [12]) that Dom(A) = H and consequently that A admits an H-adjoint,
A* : Dom(A*) C H — H. The operator A* is the extension of A* to an operator defined
on all of V or, equivalently, A* is the restriction of A* to the H-dense subset Dom(A*) =
{p e V: A*» ¢ H}. We note also that -A is the infinitesimal generator of a uniformly
exponentially stable semigroup, {7(t) : t > 0}, of bounded linear operators on H. Similarly,
—A* is the infinitesimal generator of the adjoint semigroup {7(t)* : t > 0} on H. In
addition, it can be argued that both of these semigroups admit respectively restrictions

and extensions to analytic semigroups on V and V* (see (1], [13]).

An appropriate refomulation of (3.1), {3.2) will allow an application Theorems 2.1 and
2.2. Define the operator Ly ¢ L(V.V*) by Lo® = A*® + & A, for & € V. It is not difficult

to argue that Lj is strongly V — elliptic: that is. thiere exists a constant w > 0 for which
(3.3) [Lo®.®]3 > ||}, ®eV.

and therefore that the set Dom(Lo) = {® € V: Lo® € H} is dense in H (see [13]). Define

12
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L the operator Ag : Dom(Aq) C H — H by
Apd® =Lo® + Fy(9), ® ¢ Dom(Ay) = Dom(Ly) N Cy.

- It follows that Ay is a closed operator on H and that it is strongly V — monotone. That is,
F for &, ¥ ¢ Dom(Ajp) we have

[A0® —Ao¥,®— Uy = [Lo(@— ), @ — Uy +[Fo(®)— Fo(¥). & — ¥]n > w||®—T|}.
. From this it can be argued at once that Ag is accretive on its domain and that R(I4+A44) D
Co for all XA > 0.

We rewrite (3.1), (3.2) as the initial value problem in H given by

‘w

(3.4) Io(t) + Agllo(t) = Fo(t), ae te(0,T)

(35) To(0) =TI

Now Dom(Ag) = Dom(Lo)NCy = Cy and recall that it was assumed that II3 € Co. Also
it was assumed that Fg € L,(0, T; H) with Fo(t) € Co, a.e. t € (0, T). Consequently Theorem
2.1 yields the existence of a unique integral solution Il to the initial value problem (3.1),
(3.2) with IIy(t) € Co for almost every t € (0, T). If it is further assumed that II3 € Dom(Ay)
(i.e. that IIJ € Co and that A*IIJ + I13.4 € HS(H,H)) and that Fy ¢ W'1(0, T: H) with
Fo(t) € Co, a.e. t € (0, T), then Theorem 2.2 implies the existence of unique strong solution
o e W>(0, T; H) with A*TIo(t)+o(t).A e HS(H,H), a.e. t € (0, T). Using density it can
be argued further that if II3 € Co and Fo € Ly(0, T; V*) with Fo(t)* = Fo(t), Fo(t) > 0, a.e.

t € (0,T), then there exists a unique solution ITy € L,(0, T; V)N C(0.T; H) N HY(0, T:;: V*)

with IIg(t) € Co for every t € [0, T] (of course in this setting, Iy is a solution of (3.4), (3.5)

in a distributional or V* sense). 1
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4. Approximation Theory

For each n = 1,2,... let H, be a finite dimensional subspace of H with H, C V for all
n. Let P, : H — H, denote the orthogonal projection of H onto H, with respect to the

standard inner product, (-, '), on H. We shall require the assumption that

(41)  lim |[Prp~of| =0, peV.

Note that (4.1) implies that lim [P, — ¢ = 0, » € H and that P, is uniformly
n—oc

bounded in n in both £(H) and £(V) with respect to the uniform operator topologies.

It will be necessary for us to define an extension of the operator P, to a bounded
operator from V* into V*. We do this as follows. For ¢ ¢ V* define P, € H, to be the
representer in H, of the functional ¢ restricted to a functional on H,. That is P, = ¢,
where ¢, is the unique element in H, (guaranteed to exist by the Riesz representation
theorem applied to the Hilbert space {H,,(-,-)}) which satisfies (¢,60,) = (¥n,8n), Oa € Hy.
Since H, C V C V*, P, can be considered to be a linear map of V* into itself. Indeed
Pop = ¢n is the continuous linear functional on V given by (Phyp,0) = (¢n, 6).6 € V.
The definition of the orthogonal projection of ¢ € H onto Hy,, (Pyp — »,0,) = 0,0, ¢ H,,,
reveals that we have in fact defined an extension of P, to an operator on V* with range
H, considered as a subspace of V*. Using the fact that for » ¢ V* and » € V we have
(Pap ) = (Paw.¥) = (Papv = Pov) = (Pay,Paw) = (p,Pay?), and that the P, are
uniformly bounded in £(V). it is not difficult to show that the P, are uniformly bounded in
L(V*). It is worth noting that the extension of P, defined above agrees with the operator
that would be obtained if we were to extend P, in the usual way by considering it as a
bounded operator defined on the dense subset H of the Banach space V*.

14
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It follows from assumption (4.1) that lim |[Pnp — ¢l = 0, ¢ € V*. Indeed, for
n—oo
¢ € H we have |Ph¢ —¢lls € p|Pay — ¢/ — 0asn — oo. Since H is dense in V*, and

the P, are uniformly bounded in £(V*), it follows that ||P,o — ¢« — 0 as n — oo for

@ € V*. For p,¢ € V*, we have
<Pup, ¥ >0 = (Pap,y ') = (2. Pav™1¢) = (0,77 "Pa7 ') =< 9,9Pay Ty >,

Thus P} € £(V*), the adjoint of P, considered as a bounded operator on V*, is given by

Py

= ~Puv”!. Assumption (4.1) yields
IPre ~ @lls = ' Pao—1""0ll = I 7'Pay ' =770l = IPay o — v 'l -2 0

as n — oo, for each ¢ € V*.

For each n = 1,2,... define the finite dimensional subspace H, of H by
Hy = {®,Pn: &, € L(H,)}.

Note that H, is clearly a subspace of both H and V since H, finite dimensional implies
that all operators in H, are of finite rank. Define the closed convex cone C, C H, by
Co={®PneH,:®, = &, &, > 0}. Using the fact that H, € Vand C, C C,, we

define the operator A, : Dom(A,) C H, — H, by
(42) An(QnPn) = {AO((I)nPn)}"Hns q)I\Pn € DOlll(An) = Cn-

That is Ap(P,Py) is the element Ag(®,P,) in V* restricted to a linear functional on H,,.
Since H, is a finite dimensional Hilbert space, the Riesz representation theorem implies

that A,(®,P,) = ¥,P, ¢ H, where ¥, P, is the unique element in H,, which satisfies

[AO((I)nPn)w enPn]‘H = [\I’npna @"Pn]‘){, enPn € Hy.

15
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The operators A, defined in (4.2) are in effect the standard Galerkin approximation to
Ag. Furthermore, the definition (4.2) leads to the same approximation to Ay that would
be obtained via the more conventional procedure wherein the operator A in the definition
of Ly is replaced by its Galerkin approximation. Indeed, for each n = 1,2,... define
the operator A, € L(Hn) by Anpn = ApnlH,, ¥n € Ha. That is, Appn = ¢, where
¥n is that element in H, (once again whose existence and uniqueness is guaranteed by
the Riesz representation theorem) which satisfies (Apn,0y) = (¥n,60n), 6 € Hy. Noting
that since P, is the orthogonal projection of H onto Hy, it is not difficult to argue that
[®P,,On)n = [®,0,]n for all & e V* and O, € H,, it then follows that for $,P, and

V,.P, € H, we have
[An(q)npn)a \I’nPn]'H = [AO(QnPn)’ ‘I’nPn]'H = [AO(QnPn)Pns ‘I’npn]'H
= [A*q’npn + (I)nPnAPn + fO(QnPn)Pna \I’npn]‘H

= E{(A*‘pnpnek’ \I’nPnek) + (QnPnAPnek, \IJnPnek) + (fO(QnPn)Pnekq \I’nPnek)}
k=1

i

Z {(A‘anneks ‘I/“Pnek) + (APneks 4>:\“IJnPnek) + (-7:0 (ann)Pneka ‘I/nPnek)}
k=1

[
8

{(A;(I)npneka“pnpnek) + (»An Paex, Q;‘I’npnek)+(Pnf0(q)npn)Pnekv ‘I’nPnek)}

1

= ({'A;(I)n + ¢, A, + Pnfo((pnPn)}Pnek’ \I’npnek);
k=1

8

or
Ap(®.Pn) = {A1®, + @0 An + Fu(®aPn)}Pas
where Fp(®) = P,Fo(®), ® € Co. In particular when Fo(®) = &2, we have A, (®nPn) =
{AL®, + P, A, + DL} P,.
For each n = 1,2,... define I1° ¢ C, by I = P,I3P, and F, € L;(0,T; H,) by
F,(t) = P,Fy(t)P,, for almost every ¢t € (0, T). We consider the problem of finding a

16
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solution Il to the initial value problem in H, given by

(4.3)  Ma(t)+ AuIlu(t) = Fu(t), ae. te(0,T)
(44) T,(0) = TI)

with IT,(t) € C, for almost every t € (0, T). The definition of the operator A, together with
the properties of the operator Ay yield that for each n = 1,2,... A, is closed and strongly
V — monotone on its domain. Hence A is accretive with R(I+ AA,) D C, forall A > 0.
Since m = C, = C,,1% € C,, and Fy, € L;(0, T;Hy) with Fy(t) € C, for almost
every t € (0, T), Theorem 2.1 yields the existence of a unque integral solution II; to the
initial value problem (4.3), (4.4) with II,(t) € C,, a.e. t € (0,T).

We shall argue the convergence of II, to IIg asn — oo in C(0, T;H) (i.e. the Hilbert
Schmidt norm convergence of I1,(t) to ITo(t), uniformly in t for t € [0, T]) via an application
of Theorem 2.3. In order to do this we shall require some preliminary lemmas. The first
lemma below is a technical lemma which can also be found in [7]. For completeness we

state it here and have included its rather brief proof.

Lemma 4.1 If {a;}2, is an absolutely summable sequence of real numbers, then there

exist sequences {b;}2, and {c;}2, such that lim b; = 0, {¢;}32, is absolutely summable,
1—=00
and a; = bjg,1=12,...
o0
Proof: Let o = } |a;| and for j = 0,1,2,.. define the nonnegative integers k; as follows.

Let ko = 0 and let k; denote the first index for which




T g

Set by = 1/jand ¢ = ja, fori = kj—1 +1,..,kj,j = 1.2,... . Then bic; = aj,
k; 0o
i=1,2,.. llmb—O andZIc,|—ZJ S Jakl € a+ Y & < .
i=1 k=k;_;+1 j=1°

Lemma_4.2 Let X and Y be real separable Hilbert spaces with inner products denoted by
< -+ >x and < -, >y, respectively. If ® e HS(X,Y) then ® can be factored as & = ®!P?

with ®! ¢ £(Y) compact and 2 ¢ HS(X,Y).

Proof: Let {r;}{2; and {y;}{2, be orthonormal bases for X and Y respectively. Since

® ¢ HS(X,Y) it has a representation in the form of an infinitie matrix ® « [p;] = [<
oo

¥i, ®x; >y] with E Z ¢3; < 0o. Fori =12,.. set aj = ) f. Since the sequence
i=1j= j=1

{ai}{2, is absolutely summable, we can apply Lemma 4.1 and obtain sequences {b;}2,

and {¢;}2, for which a; = byg,i = 1,2,...limb; = 0,and i = > J|ail <
i=1

1—* 00 i=1

oo. Define ®! ¢ £(Y) and ®? ¢ L(X,Y) by @'y = > Vb < y,yi >y yi, y € Y, and
=1

. 3 G < %% >x ¥, x ¢ X. Then @197 = @, and since lim Vbi =0

1= 0

2=: [2.*] o0 oo
) = Z n E ot = Z = Y ¢; < 00, it follows that ®! is compact and
i=1 =1 i=1

Lemma 4.3
(a) lim |P,®P, —®|y = 0, & eH.
n—o90

(b)  lim [[PadPy —Blly = 0, @eV.

Proof: (a). We consider P, to be an element in £(H). Then for ® ¢ ¥ = HS(H,H) we

have
anq)Pn - (I)I'H < |Pn¢Pn = Pn(I)I'H + |P“(I) - (I’I'H

18
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< [2Pn — @ln + [Pa® - @ln
= |(2P5)* ~ @"|n + |Pa® — ®n
= |Pa®* — ®*| + |Pn® — ®|5n.
Since &, ®* ¢ HS(H, H), we can apply Lemma 4.2 with X = Y = H to obtain & = &'®?

and ®* = (9*)!(®*)? with &',(®*)! ¢ L(H) compact and $%,(®*)? ¢ HS(H,H). Then

[Pa® — @y = |(Pn = 1)®'®*| g iy < (Pa =~ D@ £ty 12 sy -

The fact that P, converges strongly to the identity on H and that ®! ¢ £L(H) is compact
imply |[P,® — &% — 0 as n — ~o. Similar estimates for {P,®* — ®*|y yield the desired
result.

(b). Let ® ¢V = HS(V*,H) N HS(H,V) and consider |P,®P, — ®|lgs(v+ H)-
Since |P,| = 1 it follows that

IPa®Py — @|lusve 1) < [|Pa®Pn — Pa®lluscve .y + |[Pa® — @|lus(v-n)

< (|®Pn — @(lusvey + [Pa® — Slluscve ny.
Now & ¢ HS(V*,H) implies that ®* ¢ HS(H, V*) and that ($P,)* = P;®* ¢ HS(H,V*)
where P} denotes the adjoint of P, as an element of £(V*). Then
(4.5)  ||Pa®Pp — @llusqve.ry < |Pa®* = *||lusHvey + |Pn® ~ ®llusve n).

An applicaiton of Lemma 4.2 with X = H and Y = V* and the strong convergence of P},
to the identity on V* yield that the first term on the right hand side of the estimate (4.5)
above tends to zero as n — oo. Similarly, Lemma 4.2 with X = V* and Y = H and the
strong convergence of P, to the identity on H implies that the second term tends to zero as
n — oo as well. A similar argument can be used to show that |P,®P, — ®|lusuvy — 0

as n — oo and the lemma is proved.
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Theorem 4.1 If Il e C(0, T; H) is the unique integral solution to the initial value problem

(3.1), (3.2) (or, equivalently, (3.4), (3.5)) and II,, € C(0,T;H,) is the unique integral
solution to the initial value problem (4.3), (4.4), then I, converges to IIy in C(0, T; H) as

n — oco. That is, lim |II;(t) —o(t)| = 0 with the convergence uniform in t for t € [0, T}.
n—oo

Proof The desired result will follow immediately from Theorem 2.3 once we have verified
that the hypotheses (i)-(iv) given in the statement of that theorem hold. If &g ¢ Cy then
®, = P,dP, € C, and Lemma 4.3 implies that nli{l;lo |®, — @9l = 0. Thus nlirzgo Cn D
Co. Lemma 4.3 also implies that nli_l.‘lolo [Fa(t) = Fo(t)[n = nllngo [PaFo(t)Py — Foln = 0
for almost every t € (C, T). Properties of Hilbert-Schmidt operators and the fact that P, is
an orthogonal projection yield |Fy(t)|% = |PaFo(t)Pnln < |Fo(t)|n € L1(0,T), for a.e.
t € (0, T). Consequently hypothesis (ii) is satisfied. Once again from Lemma 4.3 we obtain
nl_i_.n;° m -y = nli_,r{.lo |P 0P, — 13| = 0. The verification of hypothesis (iv) is all
that remains.

Let A >0andlet ®,¢C,,n=0,1,2,... with lim |®,-P¢|n = 0.Set ¥, = J.(N)®,,
n—oo

n = 0,1,2,... where Jo(A) = (I+ AA,)7!. Then recalling (3.3) we have
Aw [[¥n — Pa®oPolf3, < A[Lo{¥a — Pa¥oP,}, ¥y — Py ¥oPyl,,

= [(14+ M) ¥, — (14 AAo)¥ePa, Uy — PaWoPoly, — [¥n — WoP,, ¥y — PaWoP,ly

+’\ [Lo{‘I’o - Pn‘I’OPn}a \I’n - Pn‘I’OPn]'H - /\[fn(\pn)Pn - fO(WO)Pm ‘I’n - Pn‘I’OPn]'H

= [(I'n - PnQOPm l.‘[’n - Pn\IIOPn]'){ - [\I’n - Pn\I’OPm ¥, - Pn\I’OPn]'H
+A [LO{lI/O - Pn\POPn}Pns \I’n - Pn‘POPn]'H - ’\[}_O(Wn)Pn - }_O(Pn‘POPn)Pns
‘I’n - Pn\I’OPn]’H + A [}-O(WO)Pn - fO(Pn\I’OPn)Pm\Pn - Pn\I’OPn]H
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< [®n — Poa®oPa, Yo — Poa¥oPyjy + A[Lo{¥o — PaWoPn}Pu, ¥n — Pa¥oPy]y

+/\ [«FO(\PO)Pn - }_O(Pn \I’OPn)Pn, ‘I’n - Pn‘I’OPn]'H

S ”Qn - Pn‘I’oPn|

U, — PaUoPolly + A |Lo{¥o — P, ¥oP, }Py|

V‘ v' ’

”\I’n - Pn\I/OPn“v + A ||f0(‘I’o)Pn - fO(Pn\I’OPn)PnI

v. lI‘n - Pn\II()Pn”v .

where in the above estimate we have used the facts that [Fo(¥,) ~ Fo(Po¥oPy )Py, ¥n —

P,¥oP,] > 0 and P, nonnegative self-adjoint and compact (being of finite rank) imply

[Fo(¥a)Pa — Fo(PaloPy)Pa, ¥, — Pa¥oPu]y > 0. Thus

“q}n - Pn‘I’OPn”v < Ik; ,q’n - Pn(pOPnlu
+(2/w) A v vey [Palean + 1Al v vey 1Pal ey HIP = PaToPally

+2 | Fo(o) — Fo(Pa®oPu)ly

for some positive constant k. Now
](I)n - an)opnlu S ]Qn - QOIN + ,(1)0 - PnQOPnl'H

and
1Al ev vy [Pl ey + 1Al v ey | Prlevy < B+ |Palgyy)

which is uniformly bounded in n. The assumption that lim &, = &, Lemma 4.3, and

lim |¥y — P,¥oP,|% = 0 together with the continuity of the map © — Fy(0) from H
n—ao0

into itself yield lim ||¥, — P,¥,P,]|y = 0. Consequently the estimate
n—oco
lim [¥n — ¥olu < K lim |, — Tolly
n—oo n—oo
< K lim |[¥, ~ Pa¥oPuily + K lim {|P,ToP, — Tolly
n—=o0 n—oo
together with Lemma 4.3 yield the desired result.
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Remark 4.1 Although we are unable to demonstrate that the hypotheses of the existence
result, Theorem 2.1, are satisfied when the initial value problem (3.4), (3.5) 1s considered
in the space V, we can show that hypotheses (i)-(iv) of Theorem 2.3 are in fact satisfied
in the stronger V — topology. More precisely if II € V and Fg € L;(0,T; V), then Lemma
4.3 is sufficient to obtain the convergence of II,, to IIp in C(0,T; V). In the case of a linear
dynamical system (i.e. when Ay € £(V,V*)) it is in fact possible to apply Theorem 2.1 in

the space V and therefore obtain a complete approximation theory in V (see [1]).

5. An Example

We illustrate the application of our approximation results with a linear-quadratic
optimal control problem (see [10]) involving a one dimensional heat equation (exten-
sion to higher dimensions is straightforward). Let H = L3(0,1) endcwed with the usual
inner product,(p,¥) = }ap(n)w(n)dn. Consider the optimal control problem of finding

0

u € Ly((0,T) x (0,1)) which minimizes the quadratic performance index
T
J(u) = (6x(T,-),x(T,")) + /(Qx(t, ), x(t,+)) + ru(t, -), u(t, -))dt
0

subject to the linear distributed dynamical system

(5.1) E(tn) — Za(m g(t,n) =bu(t,n), t>0,0<7<1,
(5.2) x(t,0) = 0, x(t,1) =0, t>0

(5.3) x(0,7) = x°(n), 0<np<l,

where a € Lo(0,1) with a() > a > 0, a.e. 3 € (0,1), b,r e R with r > 0, x® € L,(0,1),

G, QeCo = {®e HS(L20,1),L,(0,1)),® = @*,& > 0} Note that G. Q € Cqy implies

2
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that (Gp)(n) = Oflg(n,é)v(ﬁ)dé and (Qp)(n) = ofq(n»é)sv(é)dﬁ with g, ¢ € L2((0,1) x(0,1)),
9(m, &) = g(&m), 9(n,€) 20, ¢(n.8) = q(& ), 4(n.£) 20, a.e. (7,£) €(0,1) x(0,1).

If we set V = H}(0,1) endowed with the usual inner product, < ¢,y > =
_}Dcp(r))Du"(n)dn, and corresponding induced norm, || - ||, then V* = H7'(0,1). Define
0
the operator 4 ¢ L(V,V*) by (Ap)(v*) = (aDp.Dy), ¢,¢ € V. Then (Ap,p) >
allell?,» € V and the restriction A of the operator A to the set Dom(A) = {p e V:
Ap e H} (= H?(0,1)N H}(0,1) when a is sufficiently smooth) is positive, self-adjoint and
the infinitesimal generator of a uniformly exponentially stable analytic (parabolic) semi-
group of bounded, self-adjoint linear operators {7(t) : t > 0} on H. Let U = L,(0,1)
and define the operator B ¢ L(U,H) by (Bv)(n) = bv(n), v e U,0 < n < 1, and define

R e L(U) by (Rv)(n) = rv(n), veU,0<n< 1.

The solution to the initial value problem (5.1) - (5.3) is given by

x(t,) = T(t)x° + /’T(t —s)Bu(s)ds, t>0.

0
where for u € L2((0,T) x (0,1)) we have used the shorthand notation t — u(t) to denote
the function t — u(t,-) € L2(0,T; U). The solution to the optimal control problem is given

in closed-loop, linear state feedback form (see [10]) by

(5.4) T(t) = ~R7IB* (T —t)x(t,-) = —(b/)Iy(T ~ t)x(t.-), a.e. te(0,T),

where IIj 1s the nonnegative self-adjoint solution to the Riccati differential equation initial

value problem

(5.0) Io(t) + Allg(t) + IMo(t)A + HMo(t)BR™IB*Mo(t) = Q ae. t e (0,T)
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(5.6) o(0) = G.

Ifweset M = BR™!B* = (b%/r)l e L(H), then M = M*,M > 0 and, since M =
M® & e Cy, ®M > 0, ® € Cq. Thus Temam’s [15]) theory (with Fo(t) = @, t € [0, T),
Fo(®) = (b?%/r)®?%, and I} = G) presented in section 3 above yields the existence
of a unique integral solution Iy e C(0, T; HS(H,H)) to the initial value problem (5.5),
(5.6) with Iy € Lp(0,T; HS(H,V) N HS(V*,H)), Io € Ly(0, T;HS(H,V*) + HS(V,H))
and Tp(t) € Co, t € [0,T]. (If G is such that AG + GA ¢ HS(H,H) - for example
if G = 0 - then II; will be a strong solution with IIy ¢ W1°°(0,T; HS(H, H))). Since
H = HS(L2(0,1)),L,(0,1)) is isometrically isomorphic to L2((0,1) x (0, 1)), it follows that
there exists a 7o € C(0, T; L((0,1) x (0,1))) with mo(t,7,€) = mo(t; €, 1), mo(t,7,6) >
0. a.e. (n &) €(0.1)x(0.1),t € [0, T] such that the solution to the optimal control problem,
(5.4), 1s given by

1

/ ro(T = t; 1, €)x(t, £)dE,

0

for almost every (t,n) € (0, T) x (0,1).

b
a(t,n) = _;

We consider a linear spline based approximaton scheme. For each n = 23,... let
H, = span{y), j“;ll where for j = 1,2,...,n-1, ¢} is “he jth linear spline ("hat”) function
on [0,1] defined with respect to the uniferm mesh {0,1/n,2/n,...,1}. That is

0 0<ys &
nnp—j+1 J_—;i<775£
j+l-—np i<y
0 2l <p<l.

oh(n) =

Let P, : H — H, denote the orthogonal projection of H onto H, with respect to the
(-,+) inner product and define A, ¢ L(H,) to be the Galerkin approximation to A. More
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precisely, we set Ay¢on = ¥n, ¥n,¥n € Hn, where 3o, is the unique element in H, which
satisfies (Apn,0,) = (¥n,6n), 6 e Hy. Let Qn = P,Qe L(Hy)and G, = P,G e L(H,).

Using the properties of interpolatory splines and density arguments it is not difficult to
show that nli_‘n;o IPa —]l = 0, € H}(0,1) = V and consequently that the assumption
(4.1) is satisfied. It follows therefore, that the approximation theory developed in section

4 yields that the solution II, to the finite dimensional Riccati differential equation initial

L ~ S

value problem

(53.7)  Ma(t) + Ao (t) + Mu(t) An + (b? /D)0 (t)? = Q,, a.e.t € (0.T),

@ (5.8) II,(0) = G

with II,(t) nonnegative and self-adjoint, satisfies lim |II,(t)P, — Io(t)lusumy = O
n—oc

uniformly in t for t € [0, T).

Since the basis {}, }j“=_1l is not orthonormal, simply replacing the operators in (5.7).
(5.8) with their matrix representations will not lead to the familiar symmetric matrix
Riccati differential equation. For a linear operator L, with domain and/or range in H,.
we denote its matrix representation with respect to the basis {y), }j“=—11 by Lx. Define

¢, : [0.1]] = R I by &.(n) = (Ll(n)...0o® 1 (n))T and set My = (9,.9T) =

o .

®o(7)®@a(n)Tdy. Then Ax = M (aD®,,DET), Gn = MZ(GP,.8T) and Qx =
MG QP,. ®T). If welet Gy = MxOx, On = MxQy and [Ix(t) = MxIIx(t). then

IIx is the solution to the initial value problem

Ox(t) + ATIN() + Ox(t)Axv +(b%/r) Dn()MS TIn(t) = On. t€(0.T)




with ﬁN(t) nonnegative and self-adjoint. The approximating solution to the optimal con-

trol problem then takes the form
1
u,(t,n) = —Er)- /Trn(T —t;n,€)x(t,£)dE, ae. (t,n) e (0,T)x(0,1)
0
where m, € C(0,T;L2((0,1) x (0,1))) is given by
Ta(ti1,€) = @u(n)T MR IN()MT 80 (€),

for t € [0, T], (n,£) € [0,1] x [0, 1]. Our convergence theory yields lim 7, = mg in L((0,1) x

(0,1)) uniformly in t for t € [0, T]. That is

11
. 2
lim sup / / Ira(tin, &) — mo(t;n, €)|" dnd€ = 0.
n—0% 4(0,T]
0 o
We note that some interesting open questions which are related to our effort here
remain. For example, a Hilbert-Schmidt existence, approximation, and convergence theory
for the case in which the operator A (and therefore the operator Ag) is time varying. The

standard existence and approximation results in the spirit of Theorem 2.1-2.3 for nonlinear

systems involving time dependent operators are typically too restrictive to be of any use

in the Hilbert space framework in which the problem would be formulated. An approach
such as the one which was taken in [2] in the context of approximation methods for inverse o,
problems for nonautonomous nonlinear distributed systems which was based upon Barbu's

[3] Theorem III. 4.2 may be more appropriate.

L)
Finally a Hilbert-Schmidt approximation theory for the steady state, or algebraic {
operator Riccati equation can also be developed {see [12]). (The algebraic Riccati equation
arises in the context of the linear-quadratic optimal control problem on the infinite time o
interval).
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